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Introduction 
 
 Electrical resistivity and relative dielectric permittivity are two independent physical properties which 
characterize the behaviour of bodies when these are excited by an electromagnetic field. The measurement of 
these properties provides crucial information regarding practical uses of bodies (for example, materials that 
conduct electricity) and for countless other purposes. 
 Some papers [Grard, 1990a,b][Grard and Tabbagh, 1991][Tabbagh et al., 1993][Vannaroni et al. 
2004][Del Vento and Vannaroni, 2005] have proved that electrical resistivity and dielectric permittivity can 
be obtained by measuring complex impedance, using a system with four electrodes, but without requiring 
resistive contact between the electrodes and the investigated body. In this case, the current is made to 
circulate in the body by electric coupling, supplying the electrodes with an alternating electrical signal of 
Low or Middle Frequency (LF-MF). In this type of investigation, the range of optimal frequencies for 
resistivity values of the more common materials is between ≈10kHz and ≈1MHz. Once complex impedance 
has been acquired, the distributions of electrical resistivity and dielectric permittivity in the investigated body 
are estimated using well-known algorithms of inversion techniques. 
 Applying the same principle, but limited to the acquisition only of resistivity, there are various 
commercial instruments used in geology for investigating the first 2-5 meters underground both for the 
exploration of environmental areas and archaeological investigation [Samouëlian et al., 2005].  
 As regards the direct determination of the permittivity in subsoil, omitting geo-radar which provides 
an estimate by complex measurement procedures on radar-gram processing [Declerk, 1995][Sbartaï et al., 
2006], the only technical instrument currently used is the so-called Time-Domain Reflectometer (TDR), 
which utilizes two electrodes inserted deep in the ground in order to acquire this parameter for further 
analysis [Mojid et al., 2003][Mojid and Cho, 2004]. 
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1. RESPER probe 
 
 Previous papers [Settimi et al., 2009-2010, a-c] presented a discussion of theoretical modelling and 
moved towards a practical implementation of a RESPER probe which acquires complex impedance in the 
field. A RESPER allows measurement of electrical RESistivity and dielectric PERmittivity using alternating 
current at LFs (30kHz<f<300kHz) or MFs (300kHz<f<3MHz). By increasing the distance between the 
electrodes, it is possible to investigate the electrical properties of sub-surface structures to greater depth. In 
appropriate arrangements, measurements can be carried out with the electrodes slightly raised above the 
surface, enabling completely non-destructive analysis, although with greater error. The probe can perform 
immediate measurements on materials with high resistivity and permittivity, without subsequent stages of 
data analysis. 
  The paper [Settimi et al, 2009, b] has moved towards the practical implementation of electrical 
spectroscopy. In order to design a RESPER probe which measures the electrical resistivity and dielectric 
permittivity with inaccuracies below a prefixed limit (10%) in a band of LFs (B=100kHz), the RESPER 
should be connected to an appropriate Analogical to Digital Converter (ADC), which samples in uniform or 
in Phase and Quadrature (IQ) mode [Jankovic and Öhman, 2001]. If the probe is characterized by a galvanic 
contact with the surface, then the inaccuracies in the measurement of resistivity and permittivity, due to the 
uniform or IQ sampling ADC, can be analytically expressed. A large number of numerical simulations have 
proved that the performance depends on the selected sampler and that the IQ is preferable when compared to 
the uniform mode under the same operating conditions, i.e. number of bits and medium.  
 This report proposes to discuss the Fourier domain analysis performances of a RESPER probe. A 
uniform ADC, which is characterized by a sensible phase inaccuracy depending on frequency, is connected 
to a Fast Fourier Transform (FFT) processor, that is especially affected by a round-off amplitude noise 
linked to both the FFT register length and samples number. If the register length is equal to 32 bits, then the 
round-off noise is entirely negligible, else, once bits are reduced to 16, a technique of compensation must 
occur. In fact, oversampling can be employed within a short time window, reaching a compromise between 
the needs of limiting the phase inaccuracy due to ADC and not raising too much the number of averaged FFT 
values sufficient to bound the round-off. 
 Finally, the appendix presents an outline of somewhat lengthy demonstrations needed to calculate the 
amplitude and especially phase inaccuracies due to the round-off noise of FFT processors. 
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2. Analogical to Digital Converter (ADC) 
 
 Typically, an ADC is an electronic device that converts an input analogical voltage (or current) to a 
digital number [Razavi, 1995]. A sampler has several sources of errors. Quantization error and (assuming the 
sampling is intended to be linear) non-linearity is intrinsic to any analogical-to-digital conversion. There is 
also a so-called aperture error which is due to clock jitter and is revealed when digitizing a time-variant 
signal (not a constant value). The accuracy is mainly limited by quantization error. However, a faithful 
reproduction is only possible if the sampling rate is higher than twice the highest frequency of the signal. 
This is essentially what is embodied in the Shannon-Nyquist sampling theorem.  
 There are currently a huge number of papers published in scientific literature, and the multifaceted 
nature of each one makes it difficult to present a complete overview of the ADC models available today. 
Technological progress, which is rapidly accelerating, makes this task even harder. Clearly, models of 
advanced digitizers must match the latest technological characteristics. Different users of sampler models are 
interested in different modelling details, and so numerous models are proposed in scientific literature: some 
of them describe specific error sources [Polge et al., 1975]; others are devised to connect conversion 
techniques and corresponding errors [Arpaia et al., 1999][Arpaia et al., 2003]; others again are devoted to 
measuring the effect of each error source in order to compensate it [Björsell and Händel, 2008]. Finally, 
many papers [Kuffel et al., 1991][Zhang and Ovaska, 1998] suggest general guidelines for different models. 
 
 In order to design a RESPER probe (Fig. 1.a) which measures the electrical conductivity σ and the 
dielectric permittivity εr of a subjacent medium with inaccuracies below a prefixed limit (10%) in a band of 
LFs (B=100kHz), the RESPER can be connected to an appropriate ADC, with bit resolution not exceeding 
12, thereby rendering the probe (voltage scale of 4V) almost insensitive to the electric noise of the external 
environment (≈1mV) [Settimi et al., 2009-2010, a-c]. 
 With the aim of investigating the physics of the measuring system, the inaccuracies in the complex 
impedance measured by the RESPER (Fig. 1.b) are provided. 
In the stage downstream of the probe, the electrical voltage V is amplified VV=AV·V, then the intensity of 
current I is transformed by a trans-resistance amplifier VI=AR·I, and finally these signals are processed by the 
sampler. It follows that: 
 the inaccuracy Δ|Z|/|Z| for the amplitude of the complex impedance results from the negligible 
contributes ΔAV/AV and ΔAR/AR, respectively for the voltage and trans-resistance amplifiers, and the 
predominant one Δ|VV|/|VV| for the amplitude of the voltage, due to the sampling, 

  2 2
V VV R

V R V V

Z V VA A

Z A A V V

! ! !! !
= + + " , (2.1) 

the inaccuracies for the amplitude of the voltage and the current intensity being equal, Δ|VV|/|VV|= Δ|VI|/|VI|; 
 instead, the inaccuracy ΔΦZ/ΦZ for the initial phase of the complex impedance coincides with the one 
ΔφV/φV for the phase of the voltage, due to the sampler, 
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the initial phase of the current being null, φI=0. 
 

 
 

Figure 1.a. Equivalent circuit of a RESPER probe. 
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Figure 1.b. Block diagram of the measuring system, which is composed of: a series of four electrodes laid on the 
material to be investigated; an analogical circuit for the detection of signals connected to a high voltage sinusoidal 
generator; a digital acquisition system; and a personal computer. Starting from the left, the four electrodes can be 
seen laid on the block of material to be analyzed. Two electrodes are used to generate and measure the injected 
current (at a selected frequency), while the other two electrodes are used to measure the potential difference. In 
this way, two voltages are obtained: the first proportional to the current; the second proportional to the difference 
of potential. These voltages are digitized through an Analogical to Digital converter (ADC) connected to a 
personal computer for further processing. The real magnitudes hereby measured in the time domain are 
subsequently transformed into complex magnitudes in the frequency domain. From the ratio of the complex 
values, at the specific investigated frequency, it is possible to obtain the complex impedance. A program with an 
algorithm of numerical inversion allows the electrical resistivity and dielectric permittivity of the material to be 
obtained by measuring the complex impedance; in this way, the reliability of the measured data is immediately 
analyzed, proving very useful during a measurement program.  
 
2.1. Uniform sampling ADC 
 As concerns uniform sampling [Razavi, 1995], the inaccuracy Δ|Z|/|Z|U(n) for |Z| depends only on the 
bit resolution n, decreasing as the exponential function 2-n of n (Fig. 2.a),  

 
1

2
n
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Z

Z

!
= . (2.3) 

 Instead, the inaccuracy ΔΦZ/ΦZ|U(f,fS) for ΦZ depends on both the working frequency f of the RESPER 
and the rate sampling fS of the ADC, the inaccuracy being directly proportional to the frequency ratio f/fS 
(Fig. 2.b), 
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 As a consequence, for uniform sampling ADCs, the inaccuracy ΔΦZ/ΦZ|U(f,fS) for the phase ΦZ must 
be optimized in the upper frequency fup, so when the probe performs measurements at the limit of its band B, 
i.e. fup=B. 
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(a) 
 

 
 

(b) 
 

 
 

Figure 2. A class of uniform ADCs is specified by bit resolution n, ranging from 8 bit to 24 bit, and rate 
sampling fS, in the band of frequency [500 kHz, 2GHz]: (a) semi-logarithmic plot for the inaccuracy 
Δ|Z|/|Z|U(n) in the measurement of the amplitude for complex impedance, as a function of the resolution n; 
(b) Bode’s diagram for the inaccuracy ΔΦZ/ΦZ|U(B,fS) of the complex impedance in phase, plotted as a 
function of the rate fS, when the RESPER works in the upper frequency at the limit of its band B=100kHz. 
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3. Fast Fourier Transform (FFT) processor and round-off noise 
 
 In mathematics, the Discrete Fourier Transform (DFT) is a specific kind of Fourier transform, used in 
Fourier analysis. The DFT requires an input function that is discrete and whose non-zero values have a 
limited (finite) duration. Such inputs are often created by sampling a continuous function. Using the DFT 
implies that the finite segment which is analyzed is one period of an infinitely extended periodic signal; if 
this is not actually true, a window function has to be used to reduce the artefacts in the spectrum. In 
particular, the DFT is widely employed in signal processing and related fields to analyze the frequencies 
contained in a sampled signal. A key enabling factor for these applications is the fact that the DFT can be 
computed efficiently in practice using a Fast Fourier Transform (FFT) algorithm [Oppenheim et al., 1999]. 
 It is important to understand the effects of finite register length in the computation. Specifically, 
arithmetic round-off is analyzed by means of a linear-noise model obtained by inserting an additive noise 
source at each point in the computation algorithm where round-off occurs. However, the effects of round-off 
noise are very similar among the different classes of FFT algorithms. 
 
 Generally, a FFT processor which computes N samples, represented as nFFT+1 bit signed fractions, is 
affected by a round-off noise which is added to the inaccuracy for complex impedance, in amplitude 
[Oppenheim et al., 1999][see Appendix] 
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and in phase [Dishan, 1995][Ming and Kang, 1996][see Appendix], 
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 So, maximizing the register length to nFFT=32, the round-off noise is entirely negligible. Once that 
nFFT<32, if the number of samples is increased N>>1, then the round-off noise due to FFT degrades the 
accuracy of complex impedance, so much more in amplitude (3.1) how much less in phase (3.2). 
 One can overcome this inconvenience by iterating the FFT processor for A cycles, as the best estimate 
of one FFT value is the average of A FFT repeated values. The improvement is that the inaccuracy for the 
averaged complex impedance, in amplitude and phase, consists of the error of quantization due to the 
uniform sampling ADC (2.3)-(2.4) and on the round-off noise due to FFT (3.1)-(3.2), the last term being 
decreased of A , i.e.: 
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 Once reduced the register length to nFFT≤16, only if the FFT processor performs the averages during a 
number of cycles 
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then the round-off noise due to FFT can be neglected with respect to the quantization error due to uniform 
ADC, in amplitude 
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and especially in phase 
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 So, the round-off noise due to FFT is compensated. The quantization error due to ADC decides the 
accuracy for complex impedance: it is constant in amplitude, once fixed the bit resolution n, and can be 
limited in phase, by an oversampling technique fS>>f. 
 In the limit of the Shannon-Nyquist theorem, an electric signal with band of frequency B must be 
sampled at the minimal rate fS = 2B, holding Nmin samples in a window of time T. Instead, in the hypothesis 
of oversampling, the signal can be sampled holding the same number of samples Nmin but in a shorter time 
window T/RO, due to an high ratio of sampling: 

 1
2

S
O

f
R

B
= >> . (3.8) 

 This is equivalent to the operating condition such that, during the time window, 

 min

2

N
T

B
= , (3.9) 

the uniform over-sampling ADC holds a samples number  
 

min minO
N R N N= ! >>  (3.10) 

which is linked to the number of cycles iterated by the FFT processor: 
 2 2 2

min
1

O
A N R N! = " >> . (3.11) 

 As comments on eqs. (3.9)-(3.11), a low number of samples Nmin, corresponding to the Shannon-
Nyquist limit, shortens the time window (3.9). An high oversampling ratio lowers the phase inaccuracy 
although it raises the samples number hold by uniform ADC and especially the cycles number iterated by 
FFT; however, even a minimal oversampling ratio RO,min limits the phase inaccuracy with the advantage of 
not raising too much the samples number hold by ADC (3.10) and especially the cycles number iterated by 
FFT (3.11). 
 
 A RESPER probe (frequency band B) shows a galvanic contact with the subjacent non-saturated 
medium (terrestrial soil or concrete with low dielectric permittivity, εr = 4, and high electrical resistivity, 
1/σS = 3·103 Ω·m, 1/σC = 1·104 Ω·m). It is required that the inaccuracy Δεr/εr(f,fS,n) in the measurement of 
permittivity εr is below a prefixed limit Δεr/εr|fixed (10% 15%÷ ) within the band B (100kHz). As a first result, 
if the samples number satisfying the Shannon-Nyquist theorem is minimized, i.e. Nmin=2, then the time 
window for sampling is shortened to T = Nmin/(2B) = 1/B ≈ 10µs. In order to analyze the complex impedance 
measured by the RESPER in Fourier domain, a uniform ADC can be connected to a FFT processor, being 
affected by a round-off amplitude noise. As a conclusive result, a technique of compensation must occur. 
The ADC must be specified by: a minimal bit resolution n≤12, thereby rendering the probe almost 
insensitive to the electric noise of the external environment; and a minimal over-sampling rate fS, which 
limits the ratio RO=fS/(2B), so the actual samples number N = RO·Nmin is up to one hundred (soil, fS = 10MHz, 
RO = 50, N ≈ 100)(concrete, fS = 5MHz, RO = 25, N ≈ 50). Moreover, even if the FFT register length is equal 
to nFFT = 16, anyway the minimal rate fS ensures a number of averaged FFT values A ≤ N2 even up to ten 
thousand, necessary to bound the round-off noise (soil, A ≈ 104)(concrete, A ≈ 2.5·103) (Fig. 3)(Tab. 1) 
[Settimi et al., 2009-2010, a-c]. 
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(a) 
 

 
 

(b) 
 

 
 

Figure 3. The probe is connected to an uniform ADC of minimal bit resolution n≤12 and over-sampling rate 
fS, (12 bit, 10 MHz)(a) and (8 bit, 50 MHz) or (12 bit, 5 MHz)(b), in addition to a Fast Fourier Transform 
(FFT) processor of register length nFFT = 16 which ensures inaccuracies Δεr/εr(f) and Δσ/σ(f) in the 
measurement of permittivity εr and conductivity σ below a prefixed limit, 15% referring to (a) and 10% for 
(b), within the frequency band B=100kHz (Tab. 1) [Settimi et al., 2009-2010, a-c]. 
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(a) 
 

Soil 
(εr = 4, 

ρ = 3000 Ω·m) 

U Sampling ADC 
(n = 12, 

fS = 10 MHz) 
+ 

FFT (nFFT = 16) 
T = Nmin/2B ≈ 10 µs 

N = Nmin·(fS/2B) ≈ 100 (27 = 128) 
A ≤ N 2 ≈ 104 

fopt, fmin, fmax 
(Δεr/εr, Δσ/σ ≤ 0.15) 

156.256 kHz, 99.68 kHz, 261.559 kHz 

 
(b) 

 
Concrete 
(εr = 4, 

ρ = 10000 Ω·m) 

U Sampling ADC 
(n = 8, 

fS = 50 MHz) 
+ 

FFT (nFFT = 16) 

U Sampling ADC 
(n = 12, 

fS = 5 MHz) 
+ 

FFT (nFFT = 16) 
T = Nmin/2B ≈ 10 µs 

N = Nmin·(fS/2B)  ≈ 500 (29 = 512) ≈ 50 (26 = 64) 
A ≤ N 2 ≈ 2.5·105 ≈ 2.5·103 

fopt, fmin, fmax 
 

241.906 kHz, 99.007kHz, 591.411 kHz 
(Δεr/εr, Δσ/σ≤ 0.15) 

55.344 kHz, 38.195kHz, 83.642 kHz 
(Δεr/εr, Δσ/σ ≤ 0.1) 

 
Table 1. Refer to the caption of fig. 3. A RESPER probe is connected to an uniform ADC (Shannon-Nyquist 
theorem: limit of samples number, Nmin = 2), in addition to a FFT processor with round-off noise (T, time 
window; N, actual samples number; A, cycles number averaging FFT values). Optimal, minimum and 
maximum working frequencies, fopt, fmin and fmax, for measurements performed on terrestrial soil (a) and 
concrete (b) [Settimi et al., 2009-2010, a-c]. 
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Appendix: round-off noise of a FFT processor 
 
 The Discrete Fourier Transform (DFT) plays an important role in the analysis, design, and 
implementation of discrete-time signal-processing algorithms and systems [Oppenheim et al., 1999]. The 
basic properties of the Fourier transform and discrete Fourier transform make it particularly convenient to 
analyze and design systems in the Fourier domain. Equally important is the fact that efficient algorithms 
exist for explicitly computing the DTF. As a result, the DTF is an important component in many practical 
applications of discrete-time systems. 
 As discussed in Oppenheim (1999), the DTF is identical to samples of the Fourier transform at equally 
spaced frequencies. Consequently, computation of the N-point DTF corresponds to the computation of the N 
samples of the Fourier transform at N equally spaced frequencies, ωk=2πk/N, i.e. at N points on the unit 
circle in the complex plane. Oppenheim considers techniques for computation of the discrete Fourier 
transform. The periodicity and symmetry of the complex factor (2 )kn j N kn

NW e !"
=  can be exploited to 

increase the efficiency of DFT computations. However, the major emphasis is on Fast Fourier Transform 
(FFT) algorithms. The decimation-in-time and decimation-in-frequency classes of FFT algorithms are 
described in some detail, and even some of the implementation considerations, such as indexing and 
coefficient quantization. Much of the detailed discussion concerns algorithms that require N to be a power of 
2, since these algorithms are easy to understand, simple to program, and most often used. 
 Oppenheim (1999) has discussed effects of finite word length in DFT computations. Linear-noise 
models are used to show that the Noise-to-Signal Ratio of a DFT computation varies differently with the 
length of the sequence, depending on how scaling is done. Oppenheim also comments briefly on the use of 
floating-point representations. 
 

 
 

Figure 4. Flow graph for decimation-in-time FFT algorithm. 
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Amplitude Noise-to-Signal Ratio 
 
 A flow graph depicting the decimation-in-time algorithm for N=8 is shown in fig. 4. Some key aspects 
of this diagram are common to all standard radix-2 algorithms. The DFT is computed in ν=log2N stages. At 
each stage a new array of N numbers is formed from the previous array by linear combinations of the 
elements, taken two at a time. The ν-th array contains the desired DFT.  
 The round-off noise is modelled by associating an additive noise generator with each fixed-point 
multiplication [Oppenheim et al., 1999]. 
 
 Since, in general, the input to the FFT is a complex sequence, each of the multiplications is complex 
and thus consists of four real multiplications. Assume that the errors due to each real multiplication have the 
following properties: 

1. The errors are uniformly distributed random variables over the range (1 2) 2 FFT
n

! "  to (1 2) 2 FFT
n

+ ! , 
where numbers are represented as (nFFT+1)-bit signed fractions. Therefore, each error source has 
variance 2

2 12FFT
n! . 

2. The errors are uncorrelated with one another. 
3. all the errors are uncorrelated with the input and, consequently, also with the output. 

 Since each of the four noise sequences is uncorrelated zero-mean white noise and all have the same 
variance, 
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22 2 1
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FFT

FFT

FFT
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= # = # . (A.1) 

 To determine the mean-square value of the output noise at any output node, one must account for the 
contribution from each of the noise sources which propagate to that node.  
 The following observations can be made from the flow graph of fig. 4: 

1. The transmission function from any node in the flow graph to any other node to which it is 
connected is multiplicated by a complex constant of unit magnitude (because each branch 
transmittance is either unity or an integer power of WN). 

2. Each output node connects to seven butterflies in the flow graph. In general, each output node would 
connect to (N-1) butterflies. 

 These observations can be generalized to the case of N an arbitrary power of 2.  
 With these assumptions, then, the mean square value of the output noise in the k-th DFT value, F[k], 
is given by [Oppenheim et al., 1999] 

 [ ]
2 2( 1)

FFT
n

F k N != " , (A.2) 

which, for large N, can be approximated as: 

 [ ]
2

2

FFT
n

F k N!" . (A.3) 

 According to this result, the mean square value of the output noise is proportional to N, the number of 
points transformed. The effect of doubling N, or adding another stage in the FFT, is to double the mean-
square value of the output noise. Note that for FFT algorithms, a double-length accumulator does not help to 
reduce round-off noise, since the outputs of the butterfly computation must be stored in (nFFT+1)-bit registers 
at the output of each stage. 
 
 In implementing an FFT algorithm with fixed-point arithmetic, one must ensure against overflow. If 
the magnitude of the output of the FFT is less than unity, then the magnitude of the points in each array must 
be less than unity, i.e. there will be no overflow in any of the arrays. 
 To express this constraint as a bound on the input sequence, note that the condition 

 [ ]
1

   ,   0 1x n n N
N

< ! ! " , (A.4) 

is both necessary and sufficient to guarantee that 
 [ ] 1   ,   0 1X k k N< ! ! " . (A.5) 
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 This follows from the definition of the DFT, since: 
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1 1

0 0

   ,   0,1, 1
N N
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N

n n
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 Then eq. (A.4) is sufficient to guarantee that there will be no overflow for all stages of algorithm. 
 To obtain an explicit expression for the Noise-to-Signal Ratio at the output of the FFT algorithm, 
consider an input in which successive sequence values are uncorrelated, i.e. a white-noise input signal. Also, 
assume that the real an imaginary parts of the input sequence are uncorrelated and that each has an amplitude 
density which is uniform between 1 ( 2 )N!  and 1 ( 2 )N+ [Note that this signal satisfies eq. (A.4)]. 
Then the average squared magnitude of the complex input sequence is: 

 [ ]
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2

2

1

3
x

x n
N

! = = . (A.7) 

 The DTF of the input sequence is 

 [ ] [ ]
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=" , (A.8) 

from which it can be shown that, under the foregoing assumptions on the input, 
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 Combining eqs. (A.3) and (A.9), it is obtained [see eq. (3.1)]: 

 
[ ]

[ ]

2

22 2 2

2
3 2 FFT

FFT

n

n

F k

N N

X k

!
"

# = . (A.10) 

 According to eq. (A.10), the noise-to-signal ratio increases as N2, or 1 bit per stage. That is, if N is 
doubled, corresponding to adding one additional stage to the FFT, then to maintain the same noise-to-signal 
ratio, 1 bit must be added to the register length. The assumption of a white-noise input signal is, in fact, not 
critical here. For a variety of other inputs, the noise-to-signal ratio is still proportional to N2, with only the 
constant of proportionality changing. 
 
 The preceding analysis shows that scaling to avoid overflow is the dominant factor in determining the 
noise-to-signal ratio of fixed-point implementations of FFT algorithms. Therefore, floating-point arithmetic 
should improve the performances of these algorithms. The effect of floating point round-off on the FFT is 
analyzed both theoretically and experimentally by Gentleman and Sande (1966), Weinstein (1969), and 
Kaneko and Liu (1970) (see references therein [Oppenheim et al., 1999]). The investigations show that, since 
scaling is no longer necessary, the decrease of noise-to-signal ratio with increasing N is much less dramatic 
than for fixed-point arithmetic. 
 For example, Weinstein (1969) showed theoretically that the noise-to-signal ratio is proportional to ν 
for N=2ν, rather than proportional to N as in the fixed-point case. Therefore, quadrupling ν (raising N to the 
fourth power) increases the noise-to-signal ratio by only 1 bit. 
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Phase Noise-to-Signal Ratio 
 
 Firstly, let us consider the k-th value of the DTF  
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corresponding to a complex sequence: 
 [ ]
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R I
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 The phase Φ[k] of the k-th DFT value X[k]=|X[k]|ejΦ[k] can be calculated as 
 [ ] Im ln [ ]k X k! = , (A.13) 
instead the phase φ[n]-(2π/N)kn of the n-th sequence term x[n]e-j(2π/N)kn=|x[n]|ejφ[n]e-j(2π/N)kn as: 

 { }(2 )2
[ ] Im ln [ ] j N knn kn x n e

N
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" ## = . (A.14) 

 Applying a special inequality 
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the phase Φ[k] of the k-th DFT value (A.11) can be superiorly limited by the sum of phases φ[n] for the 
complex sequence (A.12): 
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  (A.16) 
 It follows that: the mean value [ ]k!  of the k-th DFT value phase can be expressed as a linear 

combination of all the mean values [ ]n!  for the sequence phases and the mean value k  of the index 
k=0,1…N-1, 
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 then, if the variables φ[n] and k are uncorrelated, the variance 2!
"

 is a combination of both the 

variances 2

!"  and 2

k
! , 
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 finally, as 
22 2

[ ] [ ]k k!
"
= " # " , the mean square value: 
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 Secondly, consider a stochastic complex sequence x[n] consisting of N values [see eq. (A.12)], whose 
imaginary and real parts are uniform random variables between 1 ( 2 )N!  and 1 ( 2 )N+ , defined by a 
density of probability 
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satisfying the normalization condition of probability: 
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 Assume that the imaginary and real parts, xI[n] and xR[n], of the complex sequence x[n] (A.12) are 
two statistical independent variables, so that their joint probability density 
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can be reduced to the product of the marginal densities: 
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 Applying the probability theory [Papoulis, 1991]: 
1. If the joint density of probability for the sequence imaginary and real parts, xI[n] and xR[n], is 
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p x x  (A.22), then the probability density of their ratio (linked to the sequence phase) 
y[n]=xI[n]/xR[n](=tgφ[n]) can be calculated as 
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  (A.25) 
satisfying the probability normalization condition: 
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2. Introduce the strictly monotonic increasing function φ=f(y)=arctg(y), with continuous first 
derivative f’(y)=1/(1+y2). If the density of probability for the ratio y is py(y) (A.25), then the 
probability density of the sequence phase φ[n]=arctg(y[n]) can be calculated as: 
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  (A.27) 
satisfying the normalization condition: 
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 It follows that the statistical distribution for the phase φ[n] of the stochastic complex sequence x[n] 
results characterized by the mean value 
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then by the mean square value 
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being C the Catalan’s constant: 
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 Finally, by the variance: 
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 Thirdly, consider an index k which assumes N values [see eq. (A.10)], 
 0,1, 1k N= !K , (A.33) 
with uniform probability: 
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 Similarly to what has been demonstrated by Gauss, the N integer numbers (A.33) satisfy the property 
for which their sum can be expressed as 
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and the sum of their squares in the explicit formula: 
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 It follows that the statistical distribution of the N integer numbers (A.33)-(A.34) is characterized by 
the mean value 
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then by the mean square value 
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and finally by the variance: 
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 Concluding, for large values of N, 
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this appendix has demonstrated a simple formula expressing the phase noise-to-signal ratio due a round-off 
of FFT processor (the first time on INGV scientific publications, to the best of author knowledge)[see eq. 
(3.2)]: 
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